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This article presents an algorithm for constructing orthogonal Latin hypercubes, given a fixed sample size,
in more dimensions than previous approaches. In addition, we detail a method that dramatically improves
the space-filling properties of the resultant Latin hypercubes at the expense of inducing small correlations
between the columns in the design matrix. Although the designs are applicable to many situations, they
were developed to provide Department of Defense analysts flexibility in fitting models when exploring
high-dimensional computer simulations where there is considerable a priori uncertainty about the forms

of the response surfaces.
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1. INTRODUCTION

Physical experimentation can be resource intensive in terms
of material, time, and money. Therefore, the United States De-
partment of Defense (DoD) often relies on simulation models in
its decision making. Among other things, simulation models are
used to help test war plans, decide what equipment to acquire,
determine weapon mixes, and study doctrine and potential op-
erational concepts (see, e.g., Appleget 1995; Loerch, Pudwill,
and LaBarbera 1996; and the Defense Modeling and Simula-
tion Office website: www.dmso.mil). Because there is a dearth
of data with which to assess the veracity of many of these sim-
ulations, especially at the force-on-force level or when inves-
tigating future scenarios, they are often used in an exploratory
manner. That is, the simulations are used to assist senior leader-
ship in understanding and reasoning about extremely complex
systems and processes (Bankes 1993).

The simulations that DoD analysts use are often quite large
and almost unimaginably complex. Many contain thousands of
input variables, a substantial number of which may be signifi-
cant. Moreover, many of the input variables (e.g., with whom,
where, and how a future conflict may take place) are uncer-
tain. Furthermore, as Saeger and Hinch (2001) showed, the re-
sponse surfaces may be highly nonlinear. In addition, due to the
stochastic nature of combat, most of the simulations include
pseudo-random events. Unfortunately, the complexity and un-
certainty associated with these simulations makes using strong
prior knowledge, such as the distributional form of the error
term, unreliable. To efficiently explore these simulations, we
want readily available experimental designs that allow us to
screen a large number of input variables, fit commonly used
main-effects models with nearly uncorrelated coefficient esti-
mates, while providing flexibility to fit complex models (includ-
ing nonparametric) on a modest number of dominant factors.

To address this goal, this article extends Ye’s (1998a) algo-
rithm for constructing orthogonal Latin hypercubes (OLHs) to
allow more factors to be included within a fixed sample size.
Unfortunately, the space-filling properties of these designs can
be poor. A good space-filling design is one in which the de-
sign points are scattered throughout the experimental region
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with minimal unsampled regions. To rectify this potential short-
coming, we present a computer-intensive algorithm to generate
Latin hypercubes (LHs) that have good space-filling properties
and are nearly orthogonal; for example, all correlations between
the columns in the design matrix are in the interval (—.03, .03).
It takes extensive time to generate these designs using our algo-
rithm; therefore, a catalogue of ready-to-use, nearly orthogonal
and good space-filling designs for up to 22 factors in as few
as 129 runs has been given by Cioppa (2002) and available for
download at http://harvest.nps.edu. The methodology used to
construct these designs can be applied to generate designs for
more than 22 factors.

The article is organized as follows. Section 2 provides the
background and frames the issues that our designs address. Sec-
tion 3 details our extension of Ye's algorithm to allow more
variables in a fixed-sample size OLH. But because these designs
may have poor space-filling properties, we present an algorithm
in Section 4 that provides dramatic improvement in the space-
filling properties by slightly relaxing the orthogonality require-
ment. Section 5 discusses approaches that we have found use-
ful in extending these designs to situations requiring different
combinations of factors and sample sizes. Section 6 illustrates
the use of the 22-variable design in an agent-based simulation
study of a military peace enforcement scenario. Section 7 gives
conclusions and suggests directions for future research.

2. BACKGROUND

In this section we define our notation, discuss building meta-
models to better understand the relationship between simulation
inputs and outputs, briefly review some designs frequently used
in simulation experiments, and examine the measures that we
use to assess the quality of our designs.

In the Public Domain
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2.1 Meta-Models

Consider the situation in which a simulation model contains &
continuous input variables that we wish to explore with n com-
putational experiments over a rectangular region. Suppose that
the model generates a vector of output responses denoted as y.
Let the ith input variable be denoted as x;, with X represent-
ing the n x k input design matrix and y; representing an output
response from the simulation. To help us understand our simu-
lation models, we often build meta-models to quantify the re-
lationship between the input variables (x|, xa, ..., x;) and the
output measures. A meta-model is a relatively simple function,
8, compared with the original simulation, which is constructed
given an experimental design and the corresponding responses.
A good meta-model is one in which g makes parsimonious use
of the variables available and the errors (i.e., the differences be-
tween the meta-model and the simulation output) are small.

One of the simplest and most commonly used meta-models
is one in which g is a linear combination of the inputs, that is,

k
gx)=pBo+ ) _ Bixi. M)
i=1

When estimating the coefficients in (1), the precision of the
estimates can be adversely affected by collinearity among the
input variables (Ryan 1997). If the columns in the design ma-
trix between input variables x; and x; are uncorrelated, then the
regression estimates of §; and §; in (1) are uncorrelated.

For many simulations, a linear meta-model may not suffi-
ciently characterize the response surface. Unfortunately, it takes
many more observations to estimate meta-models with curvilin-
ear and interaction terms. For example, suppose that g includes
quadratic and bilinear interaction effects, as well as the linear
terms, that is,

2% k=1 k
> B+ DY B @
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k
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To have sufficient degrees of freedom to estimate the coef-
ficients in (2), the number n of simulation runs must satisfy
n>k+k+ (12‘) + 1. Therefore, n must grow on the order of
k2. More complicated meta-models require even larger n. How-
ever, in practice, typically only a small percentage of the input
variables turn out to be significant. For example, in an empirical
simulation screening experiment, using a deterministic ecolog-
ical model, Bettonvil and Kleijnen (1997) found that only 15
of 281 factors considered had effect sizes in their linear with
two-factor interactions meta-model above a certain threshold.
Furthermore, when constructing meta-models, it is often rea-
sonable to focus the higher-order terms by assuming that sig-
nificant interactions and nonlinear terms likely include factors
that tested significant when fitting a linear response.

2.2 Designs Commonly Used to Explore Simulations

Various designs are available for practitioners to use in sim-
ulation studies (Kleijnen, Sanchez, Lucas, and Cioppa 2005).
The appropriateness of the various designs depends on many
factors, including the number of variables that one wishes to
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explore, the number of computational experiments that are fea-
sible, the types of meta-models that one wishes to be able to
analyze, whether iterations between the experiments and the
analysis are possible, a priori assumptions on the response, and
statistical criterion over which the analysts want to optimize.
We are especially interested in cases, such as those often found
in defense analysis, in which there may be multiple responses
of interest and little a priori knowledge about the forms that
the response function may take. Thus, we adopt the principle of
Santner, Williams, and Notz (2003) for selecting designs that
“allow one to fit a variety of models and provide information
about all portions of the experimental region.” Specifically, we
desire to simultaneously be able to efficiently fit linear-effects
models over many variables (often for screening purposes) and
quite complex models on a handful of dominant factors—all
within a constrained number of runs.

Perhaps the most used exploratory designs are factorial and
fractional-factorial designs. Unfortunately, the number of runs
necessary increases dramatically as the number of factors or
levels increases. Highly fractionated (e.g., Plackett and Bur-
man 1946) and supersaturated (Lin 1993) designs can mitigate
the “curse of dimensionality”; however, they have extremely
poor space-filling properties and severely limit the meta-models
that an analyst can examine. Thus they are not sufficient in
and of themselves for situations in which the response may be
complex—for example, with substantial nonlinearities, higher-
order interactions, and changepoints.

Designs commonly used in response surface methodology
(see Meyers and Montgomery 2002), such as central composite
designs (CCDs), are excellent designs for identifying quadratic
and interaction terms. Furthermore, by using highly fraction-
ated two-level designs in constructing a CCD, the number of
runs required grows modestly (on the order of k%) with the num-
ber variables. However, these designs do not have good space-
filling properties when they are projected into the subspaces de-
termined by a small number of input variables. For example,
with only five levels per factor, CCDs lack the granularity pro-
vided by designs such as LHs, which limits their effectiveness
with such exploratory techniques as regression trees.

Group screening (Dorfman 1943) and sequential bifurcation
(Bettonvil 1995) designs are able to screen a numerous factors
(e.g., >200) in a relatively few number of runs. However, these
approaches require factor sparsity and assume a priori known
directional effects of the factors. Chaloner and Verdinalli (1994)
provided an excellent expository on Bayesian experimental de-
sign and noted that Bayesian statistics can be effective in de-
termining a design and input parameter values. A deficiency
of these designs is their reliance on expert opinion and a pri-
ori beliefs. This is particularly worrisome in complex high-
dimensional problems for which little expert consensus exists.
Srivastava’s (1975) search linear models assume that the num-
ber of important factors is known a priori. This would be a
rather rare phenomenon, especially in defense analyses. Fre-
quency domain designs (Schruben 1986) are capable of iden-
tifying complex relationships between input factors and output
responses but use nonterminating simulations, which are un-
common in defense analyses.

Many different criteria exist for constructing designs. Sant-
ner et al. (2003) provided a thorough description of entropy,
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mean squared prediction error, and multiple optimization crite-
ria. Johnson, Moore, and Ylvisaker (1990) described minimax
and maximin distance designs. Potential drawbacks of these
methods include the extensive time that may be needed to con-
struct these designs based on the specified criterion, and the fact
that orthogonality may not exist.

Two promising classes of designs are LH designs—par-
ticularly the orthogonal variants—and uniform designs. A brief
description of each follows.

In LH sampling, the input variables are considered to be ran-
dom variables with known distribution functions. For each input
variable x;, “all portions of its distribution [are] represented by
input values” by dividing its range into “n strata of equal mar-
ginal probability 1/n, and [sampling] once from each stratum”
(McKay, Beckman, and Conover 1979). In practice, many ana-
lysts take a fixed value in each stratum (e.g., the median) rather
than a random value or sample from a discrete uniform distrib-
ution (see Koehler and Owen 1996). For each x;, the n sampled
input values are assigned at random to the n cases, with all n!
possible permutations being equally likely. This determines the
column in the design matrix for x; and is done independently
for each of the k input variables. Therefore, for each variable
x;, all of the n input values appear once and only once in the
design. Also, for a given row in the design matrix, all of the
n* potential combinations of the input variable values have an
equal chance of occurring. A great strength of basic LHs is that
they are easy to generate for any & and n; indeed, many simu-
lation software packages include them. When the input factors
are given uniform distributions, LHs tend to have reasonable
space-filling properties. In fact, when a discrete uniform is used
on the input variables, the one-dimensional projections are op-
timum space-filling designs. Furthermore, when the number of
input combinations (n) is sufficiently large with respect to the
number of input variables (k), there likely will be small corre-
lations between columns in the design matrix (see Owen 1994;
Lucas, Sanchez, Brown, and Vinyard 2002). When 7 is not large
with respect to k, somewhat restrictive OLHs do exist; we dis-
cuss this later.

Fang, Lin, Winker, and Zhang (2000a) defined a uniform de-
sign as one “that allocates experimental points [which are] uni-
formly scattered on the domain”; that is, they are good space-
filling designs. Uniform designs can be particularly useful when
identifying thresholds or fitting nonparametric surfaces (Fang
and Wang 1994). However, these designs do not require orthog-
onality and can be difficult to obtain; that is, they are difficult to
generate, and relatively few situations are cataloged.

2.3 Measures for Assessing Designs

Our objective is to generate and catalog designs that are
(1) readily available, like LHs; (2) are orthogonal, like frac-
tional factorial designs, or at least “nearly orthogonal,” and
(3) have good space-filling properties, like uniform designs. We
use two measures to assess both space-filling and degree of
nonorthoganility, allowing for enhanced discrimination when
choosing among candidate designs. In particular, ties in one
measure are often broken by the other measure.

An orthogonal design is desirable because it gives uncorre-
lated estimates of the coefficients in a linear regression model

and enhances the performance of many other procedures, such
as classification and regression tree models (Kim and Loh
2003). Unless specifically stated otherwise, when we refer to a
design matrix, we mean only the matrix composed of k columns
(one for each unique input variable, i.e., not including functions
of the input variables, like quadratics) and n rows (which spec-
ify the levels of values taken by the input variables).

Our first degree of nonorthogonality measure is the maxi-
mum|p;|, over all i, j such that i # j, with p;; the pairwise cor-
relation between columns x; and x;. We refer to this measure
as the maximum pairwise correlation and denote it as pmax.
The second measure of orthogonality is a condition number
of X”X, where X is the n x k design matrix. Condition num-
bers are commonly used in numerical linear algebra to examine
the sensitivities of a linear system (Golub and Van Loan 1983).
They also can reveal the degree of nonorthogonality for a candi-
date design matrix. The condition number that we use is defined
as cond(X7X) = 1 /¥, where ¥ and y, are the largest and
smallest eigenvalues of X7X after the columns of X are cen-
tered to sum to O and scaled to the range [—1, 1]. A cond(XTX)
value of 1 indicates an orthogonal design matrix. A large con-
dition number indicates that the candidate design matrix may
be ill-conditioned. We seek a condition number as close to 1 as
possible.

There is not a one-to-one correspondence between ppax and
cond(XTX), but the condition number is related to the number
of the pairs of columns that are correlated and to the magni-
tudes of the correlations. One measure, ppax, gives the worst
correlation between design matrix columns, whereas the other
measure, cond(XT X), assesses the overall degree of nonorthog-
onality of the design matrix. A design matrix will be classified
as nearly orthogonal if it has a maximum pairwise correlation
no greater than .03 and a condition number no greater than 1.13.
Although these values are somewhat arbitrary, designs meeting
them suffer minimal collinearity effects, and we show that good
space-filling designs exist with this degree of nonorthogonality.

The two measures that we use to assess the space-filling of a
design matrix are the modified L, discrepancy and the Euclid-
ean maximin distance. In uniform design theory, the Lo, dis-
crepancy, equivalent to the Kolmogorov—Smirnov statistic, is
usually used to assess the space filling of a design (Fang and
Wang 1994). Fang et al. (2000a) stated that “this is probably
the most commonly used measurement for discrepancy. .. and
has been universally accepted in quasi~Monte Carlo methods
and number theoretic methods.” Unfortunately, as they noted,
“one disadvantage of [this] measure is that it is expensive to
compute.” When the Ly, discrepancy is too computationally
burdensome, as for the designs considered herein, the modified
L, discrepancy [ML3; eq. (3), where designs are normalized
to [0, 1] in each dimension], is often used instead (Hickernell
1998; Fang, Ma, and Winker 2000b). This article uses ML, dis-
crepancy to measure the space filling of a design, with smaller
values preferred over large ones,

4\k o1k n Kk
ML2=(§) _Tzn(3_x§i)

d=1 i=1

n n &k
+ an Z Z l—[[2 — max(xgi, X)) (3)

d=1j=1 i=|
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The second measure is the Euclidean maximin (Mm) dis-
tance (Johnson et al. 1990; Morris and Mitchell 1995). For a
given design, define a distance listd = (dy, d, ..., djn(r—1)1/2)s
where the elements of d are the Euclidean distances between the
n design points, ordered from smallest to largest. The Euclidean
Mm distance is defined as d; a larger value is better. A large
value of d; means that no two points are within d; of each other.
Note that the Mm distances that we report here are for designs
scaled to the domain [—1, 1]%.

3. ORTHOGONAL LATIN HYPERCUBES WITH
ADDITIONAL VARIABLES

The designs we develop in this article build on previous work
in generating “good” LHs. The random elements in the con-
struction of LHs means that any given realization may have
poor design properties, for example, a high pmax. This is par-
ticularly likely when & and n are small. A common solution
is to generate many random LHs and select the one with the
best properties, such as the minimum ppax. Others (e.g., Flo-
rian 1992; Owen 1994) have developed algorithms that may re-
duce the off-diagonal correlations of a LH design matrix. Ye
(1998a) went farther, deriving a method that generates OLHs
(i.e., pmax = 0), when the number of runs is a power of 2 plus
1 (the plus 1 is the center point). Specifically, for any integer
m > 1, his technique builds OLHs for k variables such that the
number 7 of runs is related to £ and m by

n=2"+1 and k=2m-2. 4)

One limitation of Ye’s procedure is that too few factors can
be varied in the design, especially for n > 33. Ye (1998b) noted
that it is possible, given n in (4), “that more variables can be
accommodated.” Indeed, he listed a 17 x 8 OLH and provided
the defining structure for a 33 x 9 OLH. However, Ye (1998b)
remarked that for m > 6, “we are not able to [construct] an
OLH... the maximum number of columns are still given by
[our eq. (4)].”

In this section we extend Ye’s procedure to construct OLH
designs (for k < 67) that can accommodate more variables for
a given sample size when m > 5. We conjecture that this is also
true for k > 67. These orthogonal designs build directly from
Ye’s (1998a) OLH construction. Specifically, the design matrix
is augmented with additional columns, thus permitting a greater
number of variables in an orthogonal design matrix with the
same number of runs. To show this, we first detail Ye’s algo-
rithm.

In developing the OLHs, Ye (1998a) constructed three matri-
ces. One matrix, M, has its columns composed of permutations
of the ordinal values of the positive levels of the variables. The
method assumes that there is an equal number of negative and
positive levels for the variables. A second matrix, S, attaches
a sign to the levels in the design matrix; it is like a two-level
factorial design matrix on m — 1 variables containing m — 2 in-
teraction terms. All entries in S are +1, and the columns are
orthogonal to one another. The third matrix, T, is the element-
wise (or Hadamard) product of M and S. A mirror image of T
and a row of 0’s corresponding to the center point are then ap-
pended to the original T to create an OLH. Details now follow.

TECHNOMETRICS, FEBRUARY 2007, VOL. 49, NO. 1

The dimensions of M are g x k, with g = (n — 1)/2 being
the number of positive levels of each variable. The first step
in constructing M is to create a vector e, any ordering of the
first ¢ natural numbers (1,2,...,q). One column in M is e,
Given an initial e, permutation matrices are used to generate
the other columns of M. Specifically, for L=1,2,...,m ~ 1,
create g x g permutation matrices Az as follows. With I the

2 x 2 identity matrix and R = [ 9 (1,], each A, is constructed
by the following:

Ar=1I® - -QIRR® ---®R,
N ! st o’
m—1-L L

where ® denotes the Kronecker product. Additional permuta-
tion matrices are then created by multiplying distinct pairs of
the permutation matrices A through A,, _ by one another.

In Ye’s (1998a) algorithm, the ¥ = 2m — 2 columns of M
are composed of e, Aje fori=1,2,...,m— 1, and A;Ap, - 1€
fori=1,...,m — 2. The modification used in our construc-
tion is that the columns in M are, in order, the vector e, the
vectors Aje, fori=1,2,...,m — 1, as before, then the vectors
AjAje, for all i and j such that i =1,...,m — 2 and, for each
i,j=i+1,...,m— 1. Thus, Ye used only m — 2 of the ("';')
possible pairwise combinations of the permutation matrices Ay,
in creating M. Our construction of M uses all of the pairwise
combinations of the A; matrices. As a consequence, in our con-
struction, not all permutations of e generate an OLH.

The number of variables that can be examined by using all
pairwise combinations of the A;’s in M is as follows.

Fact 1. With n runs, where n =2" + 1 and m is an integer
>1, the maximum number of variables that can be examined in
a LH, using all original and pairwise combinations of the A,
matrices, is m + (" ').

The proof is by construction. The vector e constitutes one
variable. Each A yields a column in the design matrix, giving
another m — 1. Finally, each of the (’";l) pairwise combinations
of the A, matrices also corresponds to a column in the design
matrix.

As an example, for m =4,n =17, and k = 7, with e =

[1,2,...,8)7, our corresponding M is as follows:

e Ao Aze Agze AAze AjAze AzAze
1 2 4 8 3 7 5

2 1 3 7 4 8 6

3 4 2 6 1 5 7

4 3 1 5 2 6 8

5 6 8 4 7 3 1

6 5 7 3 8 4 2

7 8 6 2 5 1 3

8 7 5 1 6 2 4

For the matrices M and S to be conformable for elementwise
products, Ye’s S also must be given additional columns. In our
construction, the first column of S, labeled j, consists of +1,
repeated g times, the next m — 1 columns of S are the columns
used to estimate the main effects in a 2™~! full factorial design
matrix, and the remaining ("‘2_ 1) columns of S are the columns
used to estimate pairwise interactions in a 2~} full factorial
design matrix. The latter can be obtained by multiplying, el-

ement by element, the relevant pair of main effect columns.
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Specifically, we extend Ye's approach as follows. For k =
1,...,m—1,define the vectoray asay =B; ®B:®-- - ®B,,—),
where B, = ["11] and B; = [}] for i £ m — k. The resulting
m+ ("'2‘1) columns of 8 are j, a; fori=1,...,m — 1 and a;a;
fori=1,...,m—2,j=i+1,...,m—1.In Ye’s construction,
the a;a; columns are restrictedtoi=1andj=2,...,m— L.

Continuing the previous example, our corresponding S is as
follows:

] a, az as a;a; a;a3 azag
+# — -1 -1 +1 +1 +1
+1 +1 -1 -1 -1 -1 +1
+1 -1 +1 -1 -1 +1 -1
+1 +1 +1 -1 +1 -1 -1
+1 -1 -1 +1 +1 -1 -1
+1 +1 -1 +1 -1 +1 -1
+1 -1 +1 +1 -1 -1 +1
+1 +1 +1 +1 +1 +1 +1

The matrix T is the elementwise product of M and S. The de-
sign matrix is completed by augmenting T with its mirror image
and the center point, resulting in a 17 x 7 LH. We represent an
OLH by O}, where n represents the number of runs or experi-
ments and k represents the number of variables. The resulting
0%7 design is as follows:

Variable Variable Variable Variable Variable Variable Variable
Run A B (o} D E F G

1 1 -2 -4 -8 3 7 5
2 2 1 -3 ~7 -4 -8 6
3 3 -4 2 -6 -1 5 -7
4 4 3 1 -5 2 -6 -8
5 5 -6 -8 4 7 -3 -1
6 6 5 -7 3 -8 4 -2
7 7 -8 6 2 -5 -1 3
8 8 7 5 1 6 2 4
9 0 0 0 0 0 0 0
10 -1 2 4 8 -3 -7 -5
1" -2 -1 3 7 4 8 -6
12 -3 4 -2 6 1 -5 7
13 —4 -3 -1 5 -2 6 8
14 -5 6 8 -4 -7 3 1
15 -6 -5 7 -3 8 -4 2
16 -7 8 -6 -2 5 1 -3
17 -8 -7 -5 -1 -6 -2 -4

Whether the resulting (2™ + 1) x (m + (’";1)) LH is orthog-
onal depends on the choice of e. In the case where n = 17
and k =7, there are 8! possible permutations of e, resulting in
40,320 possible M matrices. A complete enumeration reveals
143 distinct 037 designs. Unfortunately, each of the 143 07
designs has an Mm distance of 1.47902; thus if only this mea-
sure is used, then there is no space-filling distinction between
the 0;7 designs. Therefore, we also consider the ML, discrep-
ancies, which range from .151854 to .173952. The O} design
generated using e =[1,2,..., 8]" has an ML, discrepancy of
.173223 (almost, but not quite, the worst ML, discrepancy). The
choice of e corresponding to the minimum (i.e., preferred) ML,
discrepancy is e = [1,2, 8,4, 5, 6,7, 3]7. The two-dimensional
projections of the variables with the best space-filling 0}7, as
measured by ML, discrepancy, are shown in Figure 1.

For any e, Ye's OLH construction guarantees orthogonal de-
signs for n and k as specified by (4). Using Proposition 1, OLHs
can be constructed for the number of variables specified in
Fact 1.

Proposition*1. 1f the matrices M, S, and T, constructed as
described earlier, use e =[1,2, ..., q]7, where g represents the
number of positive levels, to generate a LH (for up to m = 12,
i.e., k=67 and n = 4,097), then the resulting LH is orthogonal.

The proof is by computational verification. That is, we have
used this method to construct an OLH for all choices between
2 and 67 variables. It is conjectured that Proposition 1 applies
for any (positive integer) value of m.

Table 1 compares the number of variables that can be exam-
ined using Ye’s designs and the extended orthogonal designs.
As with Ye's designs, these extended orthogonal designs have
the elementwise square of each column orthogonal to all of
the columns in the design matrix, and the elementwise prod-
uct of every two columns orthogonal to all columns in the de-
sign matrix. Thus estimates of the linear effects [coefficients B;,
fori=1,...,k in eq. (2)] are uncorrelated with the estimates
of quadratic and bilinear interaction effects (coefficients B;, for
i=k+1,....,2kand Bijfori=1,....k—1,j=i+1,...,k
in eq. (2)]. However, in both our designs and Ye's designs, es-
timates of quadratic and interaction effects in (2) can be (and
usually are) correlated with one another.

Table 1 shows that as the number of levels (n) doubles (less 1,
for the center point), Ye’s designs can accommodate exactly
two more variables. In the new designs, as the number of levels
doubles, the corresponding maximum number of variables in-
creases by the previous m. This difference grows dramatically
as the number of variables to be explored increases. For exam-
ple, Ye’s approach requires more then 16 million runs to build
an OLH for 46 variables.

4. CONSTRUCTING AND CATALOGING NEARLY
ORTHOGONAL LATIN HYPERCUBES

Using Proposition 1, 2™ + 1 by m + ('"; l) OLHs exist for
k > 7; however, their space-filling properties are often quite
poor. By relaxing the requirement of orthogonality and con-
sidering LH designs that are orthogonal for at least one per-
mutation of e, we can obtain nearly orthogonal designs that
have dramatically better space-filling properties than the OLHs
constructed using Proposition 1. Toward this end, we present
a computationally intensive algorithm that produces nearly
orthogonal Latin hypercube (NOLH) designs with improved
space-filling properties.

The heuristic optimization used to generate the designs is
described in detail later. Briefly, we screen millions of ran-
dom LHs for good correlation properties. For the random LHs
with the best correlation, Florian’s (1992) correlation reduction
method is iteratively applied. (the App. provides for details on
Florian's method.) A large number of random LHs is screened
because Florian's procedure provides only limited improve-
ment in pmax and cond(X7X). By extensive exploratory calcu-
lations, we have found that screening for pmax and cond(XTX)
speeds the process and enhances the nonorthogonality mea-
sures of the final design matrix. Of those candidate designs that
satisfy the near-orthogonality constraints of a maximum pair-
wise correlation no greater than .03 and a condition number no
greater than 1.13, the design with the smallest rank sum of the

TECHNOMETRICS, FEBRUARY 2007, VOL. 49, NO. 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




50

00 05 10 -1.0
v

00 05 10

THOMAS M. CIOPPA AND THOMAS W. LUCAS

40 00 05 1.0

¥, Ly v L4 10
« ¥ o Jle o, b o ®e ¢ o, b, LIS KN 9
. L . . . . . ® .,
) ® . e . 9 . . e * loo
A 3 L] . o . (] g
e . o o - . . . e ® o,
° o le o ° ol °. L P RN | ., 1.0
101 o » . . Ve® e 0 dle Ve hd °. 9 '. o *®
. . . . .
3 .. L * - . * o lo . «°, . o
0.0 . 0. B . . o o . . . ° . o o . 4 . ° . -
. o « * ofp . * e e ® . * o ®
10 «® . e o . a L L] - (] a
v - v v v 10
* e ¢ °* Ce « ® r %y o . . te, '. *e ¢
. . . . L .
o ¢ . " e . M L .« * ® .
. o [P L4 c oo ® e olle ® * e, 00
3 ] . [} . *
o ° o [|° ® e o dl * . ® o0 b ®
a Py a a L) a 110
10 v \d v v - v
F .° o |le ® . KN b PO N olb ® * . b . ¢ °®
. . e ® e, . . . . o
00 Lo . . . . o ° D . . St . e ®
., .. « ., i o, . R . . . . ol e e
L . 0 . . .
10l a ® a L] J a 2 a° a *
. Te® o 7 e *|l o b . '. e * ° o v o o o '
« * « ° e . . hd .
3 . s 9 DA * . % . .
] . * 3 L} . 0.0
. . | o o Il «® .' o E . Ut . e
. *fle * - . o e * * 4 . o ®
Py a s, a -1.0
1.0 L) v v v, v v
o« ¢ L o S, .« . e ‘ . o°
. * . . . L oﬂ hd . e °
ool ® o " e || e . ., . b . ®
. . . . .
s . h o . F . .
Jad . * o ., b [ . [ A4 « T e
1.0 S a Py 3 a L * ® a * %
3 - e b L B (RS e - 10
o . " . ° 4 . . o,
(A . . o« P o . . . o
® . . . . ® ® . o o . G 0.0
[ ¢ o1° . . “ * e U hd
*® s o ® b - ® . o - - * o
a 4 = °* . . ° o o ale 40
-1.0 00 05 1.0 -1.0 00 05 10 -1.0 00 05 1.0 -1.0 00 05 1.0

Figure 1. Two-Dimensional Projections of the Best Space-Filling 0;7 Design With All of the Variables Scaled to Range From —1to 1.

Euclidean Mm distance and ML, is selected and cataloged. This
optimization problem is represented as

minimize f(Mm, ML,),
subject t0  pmax < .03
cond(X7X) < 1.13.

The constraints in (5) require a nearly orthogonal design. The
objective function, f, that we minimize is the rank sum of the
two space-filling properties for the designs that meet the con-
straints.

Experimental designs with near orthogonality are denoted by

&» Where N represents near orthogonality, n is the number of
runs or experiments, and & is the number of variables. Our al-
gorithm for finding NOLH experimental designs comprises the
following steps:

&)

Step 1. Determine the number of variables (k > 7) required.
If the number of variables is other than 11, 16, 22,
or, more generally, (m + ('"2‘1)), then round the re-
quired number of variables up to the nearest of these
numbers.

Step 2. Establish a maximum threshold pairwise correlation

Step 3.
Step 4.

Step 5.

Step 6.

value and a maximum threshold condition number.
Based on extensive experimentation, we use pmax =
.05, .17,.16 and cond(X"X) = 1.15,2.4,2.8 for k =
11, 16, and 22.

Using a randomly permuted e, construct a design
matrix as described in Section 3.

Calculate the pairwise correlations and the condition
number of the candidate matrix.

If either value in Step 4 exceeds the thresholds in
Step 2, then discard the design and return to Step 3 to
regenerate with another randomly permuted e. Oth-
erwise, keep the design and proceed to Step 6. Re-
peat Steps 35 until a desired number of candidate
designs are found. If not enough are found, relax the
criteria in Step 2 and begin again. We have found that
15 candidate designs works well for Steps 6-8.
Subject each of the candidate designs to repeated ap-
plications of Florian’s method to decrease the max-
imum pairwise correlation and condition numbers.
Stop when no further improvement is noted.

Table 1. A Comparison lllustrating the Increased Number of Variables That Can Be Examined by Extending Ye's (1998a, 1998b)
Construction Algorithm for OLHs

Total number of Maximum number of Number of variables Maximum number of
levels for each variables (k) for Ye's (k) in OLH identified variables (k) by
variable (n) m (1998a) OLH method by Ye (1998b) extending Ye's OLH
17 4 6 8 7
33 5 8 9 11
65 6 10 NA 16
129 7 12 NA 22
257 8 14 NA 29
513 9 16 NA 37
1,025 10 18 NA 46
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Step 7. Calculate the Mm distance and ML, discrepancy for
each of the Step 6 designs. Rank the designs ac-
cording to some combination of these measures. We
chose the design with the minimum rank sum over
the two measures.

Step 8. If a number of variables other than 7, 11, 16, 22, or
(m + (™)) is required, then construct each possi-
ble subset having the appropriate number of columns
from the Step 7 design and calculate the Mm dis-
tance and ML, discrepancy. Choose the design with
the best combination of these two measures.

By applying these steps, the best Nﬁ’, Nfs, and N21%9 de-
signs (as of this writing) have been identified; the complete
designs have been given by Cioppa (2002). For each of these
cases, we identified 15 designs that satisfy our definition
of near-orthogonality. The one with the best space filling—
determined as the minimum rank sum of Mm distance and ML,
discrepancy—was selected as the best NOLH by the procedure
proscribed earlier. Table 2 compares the best NOLH design to
the same-sized OLH and an average LH designs. The average
LH, denoted “mean LH(k, n),” is empirically determined by
generating 1,000 random LHs for the specified # and & and av-
eraging the measures. Table 2 shows that the best NOLH has
much better space-filling than the OLH, at the expense of only
a slight departure from orthogonality. Moreover, we see that in
the ranges of n and k examined, the NOLHs are vastly supe-
rior to a random discrete uniform LHs. Finally, the best NOLH
has better space-filling properties than an average random LH,
which is superior to the OLH.

Except for the 0%7 design, there is no guarantee that the N}
designs generated from this algorithm are optimal among de-
signs created using the foregoing algorithm (i.e., over all per-
mutations of e). However, these designs are nearly orthogonal
and typically have much better space-filling properties than the
orthogonal or random LHs. The designs are readily available;
recommended designs for from 2 to 22 variables and 17 to 129
runs have been given by Cioppa (2002). An easy-to-use spread-
sheet with this family of designs also has been made available
by Lucas and Sanchez (2005). This algorithm has many ad hoc
features in this algorithm. Many other approaches were tried:
the one described above produces good designs in a reasonable
amount of time.

Table 2. Comparing NOLHSs to OLHs and Discrete Uniform LHs With
Respect to Our Space-Filling and Nonorthogonality Measures

Max pairwise  Condition Mm
Design correlation number  distribution ML
o 0 1 1.671 95
Best N33 0234 1.123 1.758 73
Mean LHC(11, 33) 4401 8.671 1.295 1.01
o% 0 1 1.794 7.98
Best N 0219 1.103 2,035 4.46
Mean LHC(16, 65) 3194 6.103 1.647 5.37
0)29 0 1 1.789 9.6
Best N)2° .0015 1.036 2265  37.8
Mean LAC(22, 129) 2332 4.073 1.899 59.8

5. EXPANDING THE SET OF READILY AVAILABLE
NEAR-ORTHOGONAL LATIN HYPERCUBE DESIGNS

We developed the designs constructed in Sections 3 and 4 for
specific n and k combinations. In this section we illustrate how
effective the designs (obtained using Step 8 from the previous
section) with fewer variables can be, and show a useful way to
build off of the existing designs if taking more runs is feasible.

5.1 Designs With Fewer Variables

As mentioned in Step 8 of the algorithm (see Sec. 4), we may
require a number of variables other than 7, 11, 16, 22, and so on.
Of course, when we delete columns, the new (smaller) design
is a subset of a design with nearly orthogonal columns. There-
fore, collinearity will not be an issue, and consequently, we fo-
cus on space-filling properties when selecting which columns
to delete. Rather than construct a design by other methods, we
assume that a design obtained by eliminating columns from the
algorithmically developed (Steps 1-7) design will result in a
design with good space-filling properties. One test of this ap-
proach on the goodness of our design’s space-filling properties
is found for designs with 2 variables and 17 levels. Specifically,
Table 3 compares three designs: (1) the O)7 design, derived
by taking the two columns with the top space-filling proper-
ties from the best O} design (see Fig. 1); (2) the published
optimal uniform design of Fang and Wang (1994); and (3) the
design with the best Mm distance measure, taken from Morris
and Mitchell (1995).

The space-filling measures of the 0;7 design are nearly equal
to those of the designs with optimum space-filling properties.
Indeed, the 0;7 has an ML, discrepancy only 15% higher than
that of the optimal uniform design and an Mm distance about
3% lower than that of the best maximin design. In fact, the 057
design has a substantially better Mm distance than the uniform
design. It is noteworthy that all of these designs have zero or
minimal correlations. Our experience is that when » is large
relative to k, designs with good space-filling properties often
are close to being orthogonal.

The situation analyzed in Table 3, with n =17 and k =2,
is not a situation in which a sophisticated design is typically
needed. Indeed, a two factor, four-level full-factorial design,
augmented with a center point, is orthogonal and has reason-
able space-filling properties (with an Mm distance of .471 and
an ML, discrepancy of .0295). This example was selected for
comparison because there are very few combinations of n and &
for which optimum space-filling designs are readily available,
especially for large n and k. This is the only condition that we
have found in which we can make a direct comparison between

Table 3. Comparison of the Best 037, Uniform, and Mm Distance
Designs for the 17-Run, 2-Variable Case

Maximum pairwise Condition Mm
correlation number  distribution MLp
(0)}7 design 0 1 516 .0025
Uniform design 0 1 279 .0022
Best Mm distance
design .0588 1.125 .530 .0024
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Table 4. A Comparison of Space-Filling and Nonorthogonality
Measures for Nine-Level Designs With (about) 33 Levels

Max pairwise  Condition Mm
Design correlation number  distribution ML
Best N33 023 1.100 1512 229
Mean LHC(9, 33) 413 6.085 1.030 .347
Yo bestMmdist 03 0 1 1.720 215
Lo7 Taguchi array 0 1 2.236 2.806

our designs with fewer variables and published optimal Mm
distance and uniform designs.

A more interesting comparison is between the suggested
N33 from Cioppa (2002) and similar-sized alternative designs
that we might consider. Table 4 shows the nonorthogonality
and space-filling measures of the recommended N933 against
the mean of 1,000 9-factor, 33-level random LHs, Ye's (2005)
“33 x 9 maximin distance OLH,” and a 9-factor (each with 3
levels), 27-run Taguchi array generated by using the JMP Statis-
tical Discovery software (SAS Institute Inc. 2004). We see that
the reduced variable Ng3 is greatly preferred to a typical random
LH. It also performs quite well, although, of course, not quite as
good as Ye's maximin distance OLH. A traditional three-level
design, such as the Ly7 produced by JMP, has a sparse inte-
rior and thus has an ML; discrepancy substantially worse than
those of any of the LHs and uniform designs. Finally, although
not listed in the table (because the full design is not available),
Fang (2005) gave the ML, discrepancies for uniform designs
with up to 29 factors and up to 30 runs. The 9-factor, 30-run
design has an ML, discrepancy of .180.

5.2 Generating Additional Design Points

It may be desirable to add design points to the original design
matrix so as to improve the design’s space-filling properties and
maintain orthogonality (in the case of seven or fewer variables)
or near orthogonality (for more than seven variables). The ad-
ditional points can be used to test how well a meta-model fit to
the original data predicts the new observations. It is possible to
add the second-best design from the foregoing process to the
original design, then the third-best design, and so on. A much
simpler alternative permutes columns of the “best design” and
appends them to the “best design.” Permuting the columns of a
design matrix does not affect its space-filling measures or de-
gree of nonorthogonality. Thus this approach reuses all of the
effort that went into generating the best space-filling NOLH and
requires that only the best design be cataloged. The center point
run is redundant and thus is not repeated. Therefore, if n was the
number of runs in the initial design matrix, then the appended
design adds n — 1 runs. Proposition 2 gives the encouraging
result that the maximum pairwise correlation in the appended
design is less than or equal to what it is in the original design.
Note that because points are added to the original region with-
out an increase in dimensionality, the ML, discrepancy usually
decreases, and the Mm distance is nonincreasing.

Proposition 2. By permuting the columns of the original
NOLH containing # runs and appending these columns to the
original NOLH, the number of runs is increased to (2n — 1), and
the maximum pairwise correlation is nonincreasing.

TECHNOMETRICS, FEBRUARY 2007, VOL. 49, NO. 1

Proof. The correlation r(v,w) between two columns, v
and w, in a design matrix is defined as r(v,w) = [> (v; —
P (wi — W1/ vi — )2 Y (w; — w)2]. Furthermore, without
loss of generality, we consider the absolute value of r (v, w) in
determining the maximum pairwise correlation. For a sample
size of n, the values in the columns of our LHs take the integer
values from (—n + 1)/2 to (n — 1)/2. Thus, for any column v,
v=0and }_ v,2 = [(n — )n(n + 1)]/12. Therefore, for any two
columns of v and w, r(v, w) = Y_ viw;/[(n — Dn(n + 1)/12).
Now assume that the columns of the design matrix are per-
muted, and that we append the permuted matrix to the bot-
tom of the initial design matrix to create a new, expanded
design matrix. The new columns consist of n + (n — 1) en-
tries. Suppose that columns x and y are appended to v and w.
Then the correlation between the two columns is 7pew (V : X, W
Y) =2 viwi + Y xiyi]/[(n — Dn(n + 1)/6]. Note that the de-
nominator of ryew(V: X, W:y) is twice that of r(v, w). Without
loss of generality, suppose that maximum pairwise correlation
is greater than or equal to the negative of the minimum pair-
wise correlation. Moreover, suppose that r(v, W) = pmax; then
r(x,y) < r(v, w). Therefore, rpew(v:x, w:y) < r(v,w).

Because the original experimental design is nearly orthog-
onal, the maximum pairwise correlation value and condition
number are generally improved only marginally. Thus, when se-
lecting columns to permute, it seems wise to emphasize space-
filling properties. In the 0;7 design, an exhaustive enumeration
of the 7! column permutations is possible. In finding the best
permutation of columns to be appended, the rank sum of the
Mm distance and the ML, discrepancy are used in the same way
as was done above when seeking columns to delete. Exhaus-
tive enumerations of the column permutations for the N 1313, Nfg,

and N21§9 designs are not feasible. One possibility is to sample
randomly from the possible permutations, rank-order the result-
ing designs for their Mm distances and ML, discrepancies, and
choose the permutation design with the smallest rank sum. To
do this more efficiently, we use a heuristic to narrow the possi-
ble permutations for the random sampling. The objective of the
heuristic is to identify variables that perform well and poorly on
space-filling properties, so poor performers can be appended to
good performers.

This is done as follows. The ML, discrepancy is calculated
for each combination of three variables [e.g., in the N 1313 design,

there are (131) = 165 combinations]. The ML, discrepancies are
then rank-ordered from highest (i.e., worst space-filling) to low-
est (i.e., best space-filling). The number of times that each vari-
able appears in a combination with a high ML, discrepancy
(in the N3} design, this is the upper 82 of the 165 measures)
is compared with the number of times that each variable ap-
pears in a combination having a low ML, discrepancy (e.g., in
the Nf% design, this is the smallest 82 measures). Under the
assumption of randomness that a variable has the same likeli-
hood of appearing in either the upper half or lower half of these
combinations, an exact binomial test (see Conover 1999) at the
.10 significance level is performed to identify variables that are
more likely to appear in the better combinations and those that
are more likely to appear in the poorer combinations. For exam-
ple, if a variable appears in the upper half 94 times and in the
lower half 70 times, then the associated p value from the exact
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binomial test is .072. This variable is designated as a variable
more likely to appear in the upper half (worst space-filling). The
best-performing variables are then restricted to being appended
to the poorest-performing variables (e.g., the aforementioned
variable).

Although other heuristics are possible, this one allows us to
quickly find additional design points that improve on both the
design’s near-orthogonality measures and space-filling proper-
ties. A significance level of .10 is chosen (over, say .05) to per-
mit identification of a greater number of variables as good and
poor performers. This heuristic has identified good (although
not necessarily globally optimal) permutations, whereas ran-
dom sampling has not found a better permutation in a much
greater number of attempts. Cioppa (2002) gave suggested per-
mutations of the columns of the design matrices to append to
the best 017, N1313, Nfg, and N21§9 designs.

6. EXPLORATORY ANALYSIS OF A PEACE
ENFORCEMENT SCENARIO

These new designs were developed so that analysts could
conduct computer experiments and explore the output flexi-
bly. This section summarizes one such exploration (see Cioppa
2002).

Recent years have brought an increased emphasis on using
military forces for operations other than war, such as peace en-
forcement. The United States Army Field Manual 100-23 (De-
partment of the Army 1994) describes peace enforcement as
“the application of military force or the threat of its use, nor-
mally pursuant to international authorization, to compel com-
pliance with generally accepted resolutions or sanctions. The
purpose of peace enforcement is to maintain or restore peace
and support diplomatic efforts to reach a long-term political
settlement.” Operations of this nature are becoming common
for the military. Furthermore, many questions exist about doc-
trine and tactics for units conducting peace enforcement opera-
tions.

To generate hypotheses about light-infantry platoon-level
peace enforcement tactics, we explored a scenario of such a pla-
toon clearing an area to facilitate United Nations (UN) food dis-
tribution and military convoy operations using the agent-based
simulation MANA (Lauren and Stephen 2001). This scenario is
a challenging one, because the Blue force (a U.S. Army light-
infantry platoon) is subjected to a series of encounters with a
hostile indigenous Red force and an originally nonhostile Yel-
low force that turns hostile as the scenario progresses. This sce-
nario has been deemed doctrinally correct and plausible by the
U.S. Army Infantry Simulation Center at Fort Benning, Geor-
gia. To examine the effects of unit cohesion and agent person-
alities, 22 variables (labeled A-V) were identified for experi-
mentation. These 22 variables were selected from among many
available variables, and their levels were chosen based on the
author’s military experience and judgment and on the results
of hundreds of small, interactive experiments. The chosen in-
puts control the entities’ movement capabilities and personali-
ties. Personalities refer to the agents’ propensities to move to-
ward or away from scenario objects, such as friendly agents,
hostile agents, or a positional goal. These variables affect the

simulated units’ speed, cohesiveness, and aggressiveness. (See
Cioppa 2002 for more details on MANA and the scenario.)

As is often the case with DoD exploratory analysis, the model
is not being used to predict potential outcomes. Indeed, due to a
lack of data, the model cannot be empirically validated. Rather,
the model is used to help us devise new ideas or assess the
consequences of certain assumptions. Potential insights gleaned
from such exploration usually need to be tested elsewhere, per-
haps with field experiments.

Because 22 continuous factors were chosen, the best space-
filling N12° design was used. The output on which we focus
here is the exchange ratio (ER), the number of Red agents at-
tritted divided by the number of Blue agents attritted; higher is
considered better. Due to the high variability of ER for given
input values (e.g., coefficient of variation typically >.40), the
availability of substantial computing assets, and our interest in
examining output variability, for each of the 129 input combi-
nations, 100 iterations were conducted using different random
seeds; this gave 12,900 individual runs. A regression equation
representing the MANA results was found interactively through
trial and error, using visualization and forward and backward
stepwise selection (to include quadratic terms and two-variable
interactions). The Akaike information criterion (Akaike 1974),
sum of squares, and residual plots were the primary measures
used to build the model. Additional design points (12,800)
were then generated, as specified in Section 4.4, as a way to
cross-validate the hypothesized regression equation. This is in
keeping with the Department of Defense’s policy of model-
experiment—-model (Piplani, Mercer, and Roop 1994). Here the
model is our meta-model. After building the meta-model, we
assessed how well it predicts the experiments (in MANA) at
new input combinations. This process was continued until the
model was deemed “good enough.” The results shown in Fig-
ure 2 indicate that the differences between the predicted re-
sponses and the actual responses were acceptably low in the
opinion of military subject matter experts at the U.S. Army In-
fantry Simulation Center (Cioppa 2002). Thus the first and sec-
ond experiments are combined, and a regression analysis was
executed on the 257 input variable combinations and 25,700 to-
tal simulation runs.

Figure 2. Predicted Values versus Actual Values (second experi-
ment) With Least Squares Fitted Line (—) and Weighted Least Squares
Line(------ ) for the Mean ERs.
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The resulting model, shown in (6), has an R2 of .67. The fitted
exchange ratio as a function of the 22 independent variables is

ER = 1.890 + (1.928e—007) U2 + (.000457)B + (.000736)E
+ (.00237)F + (.00568)G + (.000826)P — (.00898)U
— (.00327)V — (4.866e—006)BU — (3.021e—005)GU
— (2.688e—005)FV + (1.378e—005)1J
+ (2.225¢—-006)BN. 6)

We see that the fitted model has quadratic and interaction
terms, including an interaction in which neither variable shows
up as a main effect. Guided by the regression, and many visual
playbacks, several working hypotheses based on this scenario
can be gleaned, including the following:

o Speed of execution (U) and precision of movement (B) are
critical to Blue’s success.

e When the Blue elements are in contact with the threat, they
should consider moving toward other friendly elements
(variables E, F, G)—that is, massing its forces.

e When Blue elements have taken casualties and are in con-
tact, continuing the operation instead of ceasing, though
simultaneously trying to move toward other friendly units,
may be advantageous over the course of the battle (vari-
ables I,J,N, P).

It is important to emphasize that in this exploratory analysis,
we are primarily trying to identify the factors that have a sig-
nificant effect on the exchange ratio, along with the directions
of those effects and which, if any, factors interact. We consid-
ered a quadratic to be sufficient for these purposes. However,
for purposes of prediction, a second-order model may be in-
adequate; for example, a second-order response surface has at
most one extremum. Unless one had reason to believe that the
actual computer model has this property, perhaps a more flex-
ible model (e.g., spatial models; see Cressie 1993) would be
more appropriate.

An unexpected thing that came out of the exploration was
the discovery of a software bug over a relatively narrow range
of one of MANA’s parameters. In particular, the input control-
ling the agent’s movement range (U) was found to not work
properly at values of 101-114. Note that this input takes integer
values between 0 and 200. These thresholds were easily iden-
tified by regression trees. Identifying this bug, and specifying
the range of the problem, would have been essentially impossi-
ble with a low-level factorial or central composite design. This
discovery was reported to the developers of the model and il-
lustrates these designs’ potential in verifying models as well
as using themn. This example illustrates a critical advantage of
using the N21§9 design for exploration over a replicated central
composite or other competing design. Specifically, the Nj2° de-
sign provides better resolution on critical thresholds or change-
points. As such, we have found that they are particularly suit-
able for generating data to be analyzed with regression trees.
(See Cioppa 2002 for more on this analysis.)

Although the foregoing exploration emphasized regression
and visualization, the data are amenable to analysis by a host
of methods. For example, using the N2° design, Ipekci (2002)
applied neural networks, regression trees, multiple additive re-
gression trees, and Bayes nets to explore the relationships
among the input settings and the outputs.
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7. CONCLUSIONS AND AREAS FOR
FURTHER RESEARCH

In the DoD and elsewhere, we are increasingly reliant on
computer simulations in which there is a vast space of possible
computational experiments. In selecting a design, there is a rich
literature from which we can draw. Many of the commonly used
designs were originally developed for agricultural, industrial, or
laboratory experiments. Unfortunately, most of these designs
were developed for situations involving a modest number of
factors and runs in which strong assumptions are made a priori
about the response (e.g., low-order polynomial) and error (e.g.,
homoscedastic normal error). These situations are often not ap-
plicable to computer exploration. Thus we desire readily avail-
able designs that allow analysts to explore how well a diverse
set of meta-models captures the relationships between many in-
put variables of a simulation and one or more output variables.
Toward that end, we have presented an algorithm that generates
NOLHs with good space-filling properties. These designs allow
an analyst to examine many factors by fitting models with main,
quadratic, and interaction effects with nearly uncorrelated esti-
mates of the regression coefficients for the linear effects terms.
Having identified the dominant variables, analysts have consid-
erable flexibility in fitting meta-models to them. Furthermore,
we have cataloged and implemented in a spreadsheet a set of
these designs for from 2 to 22 factors in as few as 129 input
combinations, so they are readily available (Cioppa 2002; Lu-
cas and Sanchez 2005; and http://harvest.nps.edu).

Two areas related to this research are particularly worthy
of exploration. The first area concerns design matrices with a
large number of both continuous quantitative and qualitative
variables. Currently, when a variable contains fewer levels than
runs, the levels are used more than once. For example, if one
factor has two levels, say high and low, then all of the posi-
tive values in the appropriate column of our NOLH are set to
high and the negative values are set to low. The appropriate col-
umn is chosen by searching over all columns and selecting the
one that provides the best performance with respect to our near-
orthogonality and space-filling measures. This method works
reasonably well when there are only a handful of qualitative
factors (see Cioppa and Brown 2003); a thorough examination
over a variety of cases is necessary. The second area of con-
tinuing research concerns sequencing, combining, and crossing
the proposed designs with full-factorial, fractional factorial, or
group screening designs.
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APPENDIX: CORRELATION REDUCTION METHOD

In brief, Florian’s (1992) method is as follows. For each col-
umn of a design matrix X, each element is replaced with its
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rank within the column. This » x k matrix is denoted by W.
Let C, a k x k matrix, be the rank correlation matrix of W. If
each pair of columns in W is uncorrelated, then C is the k x k
identity matrix I. Only those realizations of W for which C are
positive definite are considered. The basic idea is to transform
W into a set of uncorrelated variates. A Cholesky factorization
scheme is used (because C is positive definite) to determine a
lower-triangular matrix, Q, which is k x k. Then let D = Q!
and C = QQ such that D has the property DCD” = I. The
original W is then transformed into a new matrix by Wp =
WD Because the elements of the matrix Wp are not necessar-
ily integral, the elements in each column are replaced by their
rank.

Iman and Conover (1980) proved that the difference between
corresponding elements in the correlation matrix of Wg and
I is lower than the analogous difference in W and 1. Because
the elements of Wp are replaced by ranks, this process can be
repeated until there is no further decrease in the maximum pair-
wise correlation or condition number. When applying this pro-
cedure iteratively, it is quite common for the maximum pairwise
correlation to not change, but the condition number to decrease.
Thus, if the procedure uses only the maximum pairwise corre-
lation value, then this iteration process may stop too soon, even
though a better design matrix may exist.

[Received July 2003. Revised October 2005.]
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